An Introduction to Neural Networks falls into a new ecological niche for texts. Based on notes that have been class-tested for more than a decade, it is aimed at cognitive science and neuroscience students who need to understand brain function in terms of computational modeling, and at engineers who want to go beyond formal algorithms to applications and computing strategies. It is the only current text to approach networks from a broad neuroscience and cognitive science perspective, with an emphasis on the biology and psychology behind the assumptions of the models, as well as on what the models might be used for. It describes the mathematical and computational tools needed and provides an account of the author's own ideas. Students learn how to teach arithmetic to a neural network and get a short course on linear associative memory and adaptive maps. They are introduced to the author's brain-state-in-a-box (BSB) model and are provided with some of the neurobiological background necessary for a firm grasp of the general subject. The field now known as neural networks has split in recent years into two major groups, mirrored in the texts that are currently available: the engineers who are primarily interested in practical applications of the new adaptive, parallel computing technology, and the cognitive scientists and neuroscientists who are interested in scientific applications. As the gap between these two groups widens, Anderson notes that the academics have tended to drift off into irrelevant, often excessively abstract research while the engineers have lost contact with the source of ideas in the field. Neuroscience, he points out, provides a rich and valuable source of ideas about data representation and setting up the data representation is the major part of neural network programming. Both cognitive science and neuroscience give insights into how this can be done effectively: cognitive science suggests what to compute and neuroscience suggests how to compute it.
Introduction to Neural Networks in Java, Second Edition, introduces the Java programmer to the world of Neural Networks and Artificial Intelligence.
TT66 • Metrics for High - Quality Specular Surfaces , Lionel R. Baker , Vol . TT65 • Field Mathematics for Electromagnetics , Photonics , and Materials Science , Bernard Maxum , Vol . TT64 • High - Fidelity Medical Imaging Displays ...
429 [Co88b A.C.C. Coolen and T.W. Ruijgrok: Image Evolution in Hopfield Networks, Phys. Rev. A 38, 4253 (1988) [Co92] J.E. Collard: Commodity Trading with a Three Year Old, in: Neural Networks in Finance and ...
In addition to showing the programmer how to construct Neural Networks, the book discusses the Java Object Oriented Neural Engine (JOONE), a free open source Java neural engine. (Computers)
This book is a beginning graduate-level introduction to neural networks which is divided into four parts.
This fundamental book on Artificial Neural Networks has its emphasis on clear concepts, ease of understanding and simple examples.
This book offers the first introduction of foundational ideas from automated verification as applied to deep neural networks and deep learning.
This book introduces a variety of neural network methods for solving differential equations arising in science and engineering.
In this book, theoretical laws and models previously scattered in the literature are brought together into a general theory of artificial neural nets.
This book covers both classical and modern models in deep learning.