The Voice in the Machine: Building Computers that Understand Speech

The Voice in the Machine: Building Computers that Understand Speech
ISBN-10
0262016850
ISBN-13
9780262016858
Category
Machine learning
Pages
325
Language
English
Published
2012
Publisher
MIT Press
Author
Roberto Pieraccini

Description

Stanley Kubrick's 1968 film 2001: A Space Odyssey famously featured HAL, a computer with the ability to hold lengthy conversations with his fellow space travelers. More than forty years later, we have advanced computer technology that Kubrick never imagined, but we do not have computers that talk and understand speech as HAL did. Is it a failure of our technology that we have not gotten much further than an automated voice that tells us to "say or press 1"? Or is there something fundamental in human language and speech that we do not yet understand deeply enough to be able to replicate in a computer? In The Voice in the Machine, Roberto Pieraccini examines six decades of work in science and technology to develop computers that can interact with humans using speech and the industry that has arisen around the quest for these technologies. He shows that although the computers today that understand speech may not have HAL's capacity for conversation, they have capabilities that make them usable in many applications today and are on a fast track of improvement and innovation. Pieraccini describes the evolution of speech recognition and speech understanding processes from waveform methods to artificial intelligence approaches to statistical learning and modeling of human speech based on a rigorous mathematical model -- specifically, Hidden Markov Models (HMM). He details the development of dialog systems, the ability to produce speech, and the process of bringing talking machines to the market. Finally, he asks a question that only the future can answer: will we end up with HAL-like computers or something completely unexpected?

Similar books

  • Machine Learning Pocket Reference
    By Matthew Harrison

    Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data.

  • Deep Learning: Methods and Applications
    By Li Deng, Dong Yu

    Provides an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks

  • Learning from Data: A Short Course
    By Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Tien Lin

    Learning from Data: A Short Course

  • The Hundred-page Machine Learning Book
    By Andriy Burkov

    Provides a practical guide to get started and execute on machine learning within a few days without necessarily knowing much about machine learning.The first five chapters are enough to get you started and the next few chapters provide you ...

  • Mathematics for Machine Learning
    By Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong

    Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

  • Introduction to Machine Learning
    By Etienne Bernard

    The math content is kept to a minimum to focus on what matters-applying the concepts in useful contexts. This book is sure to benefit anyone curious about the fascinating field of machine learning.

  • Deep Learning with Python
    By Francois Chollet

    By the time you reach the end of this book, you will have become a Keras expert and will be able to apply deep learning in your own projects.

  • Optimization for Machine Learning
    By Stephen J. Wright, Sebastian Nowozin, Suvrit Sra

    This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods.

  • Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction
    By Valentina Emilia Balas, Harsh S. Dhiman

    The specific topics of ramp event prediction and wake interactions are addressed in this book, along with forecasted performance.

  • Trends in Neural Computation

    Trends in Neural Computation