Thermal and statistical physics has established the principles and procedures needed to understand and explain the properties of systems consisting of macroscopically large numbers of particles. By developing microscopic statistical physics and macroscopic classical thermodynamic descriptions in tandem, Statistical and Thermal Physics: An Introduction provides insight into basic concepts and relationships at an advanced undergraduate level. This second edition is updated throughout, providing a highly detailed, profoundly thorough, and comprehensive introduction to the subject and features exercises within the text as well as end-of-chapter problems. Part I of this book consists of nine chapters, the first three of which deal with the basics of equilibrium thermodynamics, including the fundamental relation. The following three chapters introduce microstates and lead to the Boltzmann definition of the entropy using the microcanonical ensemble approach. In developing the subject, the ideal gas and the ideal spin system are introduced as models for discussion. The laws of thermodynamics are compactly stated. The final three chapters in Part I introduce the thermodynamic potentials and the Maxwell relations. Applications of thermodynamics to gases, condensed matter, and phase transitions and critical phenomena are dealt with in detail. Initial chapters in Part II present the elements of probability theory and establish the thermodynamic equivalence of the three statistical ensembles that are used in determining probabilities. The canonical and the grand canonical distributions are obtained and discussed. Chapters 12-15 are concerned with quantum distributions. By making use of the grand canonical distribution, the Fermi-Dirac and Bose-Einstein quantum distribution functions are derived and then used to explain the properties of ideal Fermi and Bose gases. The Planck distribution is introduced and applied to photons in radiation and to phonons on solids. The last five chapters cover a variety of topics: the ideal gas revisited, nonideal systems, the density matrix, reactions, and irreversible thermodynamics. A flowchart is provided to assist instructors on planning a course. Key Features: Fully updated throughout, with new content on exciting topics, including black hole thermodynamics, Heisenberg antiferromagnetic chains, entropy and information theory, renewable and nonrenewable energy sources, and the mean field theory of antiferromagnetic systems Additional problem exercises with solutions provide further learning opportunities Suitable for advanced undergraduate students in physics or applied physics. Michael J.R. Hoch spent many years as a visiting scientist at the National High Magnetic Field Laboratory at Florida State University, USA. Prior to this, he was a professor of physics and the director of the Condensed Matter Physics Research Unit at the University of the Witwatersrand, Johannesburg, where he is currently professor emeritus in the School of Physics.
A series that unlocks the science secrets of the simplest, everyday things, introducing children to the fact that science is truly all around them
Introduces matter, discusses how our understanding of different materials and their properties has developed through history, and looks at some of the new materials which have been developed. Suggested level: primary, intermediate.
Dalton is sometimes called the father of chemistry. Unlike Democritus, Dalton believed that different matter is made up of different atoms. He set out to determine the different weights of each type of atom. both made up of small ...
In Search of the Ultimate Structure of Matter (sound Recording).
本书试图通过对记忆的研究,来确定精神与身体之间的关系.书中考察了纯粹记忆,并把以具体形式出现的知觉看作纯粹记忆和纯粹知觉的综合体,即思维和材料的综合体.
本书包括:论有意识呈现的形象选择我们身体的意义及其运作;论形象认知记忆与大脑;论形象的存活记忆与思维等内容。
A mix of science and art that brings the world of physics to life.
Photocatalysis is currently an extensively studied research area with a variety of potential commercial/industrial applications ranging from the production of H 2 from water as a clean energy source to the treatment of waste water by solar ...
What Does it Go In?: Student's resource book
Changes of State