Linear Algebra: An Inquiry-based Approach is written to give instructors a tool to teach students to develop a mathematical concept from first principles. The Inquiry-based Approach is central to this development. The text is organized around and offers the standard topics expected in a first undergraduate course in linear algebra. In our approach, students begin with a problem and develop the mathematics necessary to describe, solve, and generalize it. Thus students learn a vital skill for the 21st century: the ability to create a solution to a problem. This text is offered to foster an environment that supports the creative process. The twin goals of this textbook are: Providing opportunities to be creative, Teaching "ways of thinking" that will make it easier for to be creative. To motivate the development of the concepts and techniques of linear algebra, we include more than two hundred Activities on a wide range of problems, from purely mathematical questions, through applications in biology, computer science, cryptography, and more. Table of Contents Introduction and Features For the Student . . . and Teacher Prerequisites Suggested Sequences 1. Tuples and Vectors 2. Systems of Linear Equations 3. Transformations 4. Matrix Algebra 5. Vector Spaces 6. Determinants 7. Eigenvalues and Eigenvectors 8. Decomposition 9. Extras Bibliography Index Bibliography Jeff Suzuki is Associate Professor of Mathematics at Brooklyn College and holds a Ph.D. from Boston University. His research interests include mathematics education, history of mathematics, and the application of mathematics to society and technology. He is a two-time winner of the prestigious Carl B. Allendoerfer Award for expository writing. His publications have appeared in The College Mathematics Journals; Mathematics Magazine; Mathematics Teacher; and the American Mathematical Society's blog on teaching and learning mathematics. His YouTube channel (http://youtube.com/jeffsuzuki1) includes videos on mathematical subjects ranging from elementary arithmetic to linear algebra, cryptography, and differential equations.
However the book is logically self-contained. In this new edition, many parts of the book have been rewritten and reorganized, and new exercises have been added.
Numerical Linear Algebra is a concise, insightful, and elegant introduction to the field of numerical linear algebra.
Line up the basics — discover several different approaches to organizing numbers and equations, and solve systems of equations algebraically or with matrices Relate vectors and linear transformations — link vectors and matrices with ...
Covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, ...
"This book is intended for first- and second-year undergraduates arriving with average mathematics grades ... The strength of the text is in the large number of examples and the step-by-step explanation of each topic as it is introduced.
While not designed as an introductory text, the book's well-chosen topics, brevity of presentation, and the author's reputation will recommend it to all students, teachers, and mathematicians working in this sector.
But this follows immediately from the Cauchy—Schwartz inequality, which can be stated as cos6 : (X. y) llXll llyll Definition 10.9 (Orthogonal vectors) Suppose that V is an inner. The usefulness of this definition is in the concept of ...
In short, this is material that many of us wish we had been taught as graduate students. Roughly the first third of the book covers the basic material of a first course in linear algebra.
One of the best available works on matrix theory in the context of modern algebra, this text bridges the gap between ordinary undergraduate studies and completely abstract mathematics. 1952 edition.
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.