A New Construction for Williamson-type Matrices
R. Inst. Lombardo Sci. e Lett., 2 (31): 1441–1446, 1898. 151 B. Schmidt. Cyclotomic integers and finite geometry. J. Am. Math. Soc., 12 (4): 929–952, 1999. 152 B. Schmidt. Williamson matrices and a conjecture of Ito's.
A special class of Williamson matrices and difference sets . ... Construction of amicable orthogonal designs . Bull . Austral . Math . Soc . 12 ( 1975 ) : 179–182 . 120. J. S. Wallis . Construction of Williamson type matrices .
WILLIAMSON MATRICES and A, Aj = A; A, then each Williamson family of type (1,1,1,1, R) = (1, 4, R) coincides with a family of generalized ... [2] BAUMERT, L.D., AND HALL JR., M.: 'A new construction for Hadamard matrices', Bull. Amer.
[ 21 ] C.Koukouvinos and J.Seberry , Hadamard matrices of order = 8 ( mod 16 ) with maximal excess , Discrete Math ... ( 30 ) J.Seberry Wallis , Construction of Williamson type matrices , Linear and Multilinear Algebra , 3 ( 1975 ) ...
Cyclic and noncyclic generalized 6-code construction. Proc. Intern. Coll. Inf. Theory, 24–28 August, Budapest. Agaian S. S., Sarukhanian A. G. (1981) . Recurrent formulae of construction of Williamson type matrices. Mat.
Williamson - type matrices if they are pairwise amicable ( see $ 2.1 ) , or 3. Goethals - Seidel type matrices if they are type I. 1.37 Construction Replacing variables of W ( from Examples 1.33 ) with Williamson matrices A , B , C , D ...
Sylvester, J.J.: Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tesselated pavements in two or more ... Springer, Berlin-Heidelberg-New York (1974) Wallis, J.: Construction of Williamson type matrices.
REFERENCES JOAN COOPER AND JENNIFER WALLIS, A construction for Hadamand arrays, Bull. Austral. Math.Soc. 7 (1972), 269-278. ... JENNIFER SEBERRY WALLIS, Construction of Williamson-type matrices, (to appear). JENNIFER SEBERRY WALLIS ...
A Note on the Construction of Hadamard Matrices S. S. AGAIAN and A. G. SARUKHANIAN Computing Centre, ... of different types depended on the existence of Baumert-Hall's and Geothals-Seidel's arrays and Williamson's type matrices”.