Study of the Critical Points at Infinity Arising from the Failure of the Palais-Smale Condition for n-Body Type Problems

Study of the Critical Points at Infinity Arising from the Failure of the Palais-Smale Condition for n-Body Type Problems
ISBN-10
0821808737
ISBN-13
9780821808733
Category
Mathematics
Pages
112
Language
English
Published
1999
Publisher
American Mathematical Soc.
Author
Hasna Riahi

Description

In this work, the author examines the following: When the Hamiltonian system $m_i \ddot{q}_i + (\partial V/\partial q_i) (t,q) =0$ with periodicity condition $q(t+T) = q(t),\; \forall t \in \mathfrak R$ (where $q_{i} \in \mathfrak R^{\ell}$, $\ell \ge 3$, $1 \le i \le n$, $q = (q_{1},...,q_{n})$ and $V = \sum V_{ij}(t,q_{i}-q_{j})$ with $V_{ij}(t,\xi)$ $T$-periodic in $t$ and singular in $\xi$ at $\xi = 0$) is posed as a variational problem, the corresponding functional does not satisfy the Palais-Smale condition and this leads to the notion of critical points at infinity. This volume is a study of these critical points at infinity and of the topology of their stable and unstable manifolds. The potential considered here satisfies the strong force hypothesis which eliminates collision orbits. The details are given for 4-body type problems then generalized to n-body type problems.

Similar books