2000 An invariant of minimal flows coming from the Ko-group of a crossed product C*-algebra, Ergod. Th. and Dyn. Syst. ... Nikolaev, I. and Vulpe, N. 1997 Topological classification of quadratic systems at infinity, J. London Math. Soc.
Here is a sufficient condition for global structural stability: Theorem 11.4.1 Suppose that M is an open surface and f' is a C", r > 1 flow on M, satisfying the following conditions: (i) there are no oscillating orbits and there are no ...
Kotus, M. Krych and Z. Nitecki, Global Structural Stability of Flows on Open Surfaces, Am. Math. Soc. , 1982. A. Krasnosel'skii, V. Sh. Burd, and Yu. S. Kolesov, Nonlinear Almost Periodic oscillations, Wiley, 1973. Kubicek and M. Marek, ...
... The Siegel modular variety of degree two and level four/Cohomology of the Siegel modular group of degree two and level four, 1998 Florin Rădulescu, The T-equivariant form of the Berezin quantization of the upper half plane, ...
Proceedings of the International Symposium, held at the Instituto de Matematica Pura e Aplicada, Rio de Janeiro, Brasil, July - August ... KKN J. Kotus, M. Krych, and Z. Nitecki, Global Structural Stability of Flows on Open Surfaces.
[16] J. Kotus, M. Kyrch and Z. Nitecki, Global structural stability of flows on open surfaces, Memoirs A.M.S., 37 (1982), 1–108. [17] A. Liapunov, Probleme general de la stabilitie du mouvement, Ann. Fac. Sci. Univ.
X. JARQUE AND J. LLIBRE, Structural stability of planar Hamiltonian polynomial vector fields, Proc. London Math. Soc. 68 (1994), pp. 617–640. J. KOTUS, M. KRYCH AND Z. NITECKI, “Global structural stability of flows on open surfaces,” ...
Kotus , J .; Krych , M .; Nitecki , Z .: Global structural stability of flows on open surfaces . Mem . Am . Math . Soc . 261 , 108 p . ( 1982 ) . Zbl . 497.58015 45. Kurland , H.L .: Homotopy invariants of repeller - attractor pairs .
Kotus J, Kyrch M, Nitecki Z (1982) Global structural stability of flows on open surfaces. Mem Am Math Soc 37:1–108 Peixoto M (1962) Structural stability on two-dimensional manifolds. Topology 1:101–120 Perko L (2008) Differential ...
Reviews in Global Analysis, 1980-86 as Printed in Mathematical Reviews