Rolfsen's beautiful book on knots and links can be read by anyone, from beginner to expert, who wants to learn about knot theory. Beginners find an inviting introduction to the elements of topology, emphasizing the tools needed for understanding knots, the fundamental group and van Kampen's theorem, for example, which are then applied to concrete problems, such as computing knot groups. For experts, Rolfsen explains advanced topics, such as the connections between knot theory and surgery and how they are useful to understanding three-manifolds. Besides providing a guide to understanding knot theory, the book offers 'practical' training. After reading it, you will be able to do many things: compute presentations of knot groups, Alexander polynomials, and other invariants; perform surgery on three-manifolds; and visualize knots and their complements.It is characterized by its hands-on approach and emphasis on a visual, geometric understanding. Rolfsen offers invaluable insight and strikes a perfect balance between giving technical details and offering informal explanations. The illustrations are superb, and a wealth of examples are included. Now back in print by the AMS, the book is still a standard reference in knot theory. It is written in a remarkable style that makes it useful for both beginners and researchers. Particularly noteworthy is the table of knots and links at the end. This volume is an excellent introduction to the topic and is suitable as a textbook for a course in knot theory or 3-manifolds. Other key books of interest on this topic available from the AMS are ""The Shoelace Book: A Mathematical Guide to the Best (and Worst) Ways to Lace your Shoes"" and ""The Knot Book"".
- ;The main theme of this book is the mathematical theory of knots and its interaction with the theory of surfaces and of group presentations.
Genera of the Arborescent Links
... by Philip J. Davis Celestial Mechanics, by Harry Pollard Field Theory and its Classical Problems, by Charles Robert Hadlock The Generalized Riemann Integral, by Robert M. McLeod From Error-Correcting Codes through Sphere Packings to ...
Quandles are essentially knots translated into algebra. This book provides an accessible introduction to quandle theory for readers with a background in linear algebra.
MR1238875(94i:57007) [6] J. Scott Carter and Masahico Saito, Knotted surfaces and their diagrams, Mathematical Surveys and Monographs, vol. 55, American Mathematical Society, Providence, RI, 1998. MR1487374 (98m:57027) [7] R. H. Fox, ...
The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots
... Introduction to Analytic and Probabilistic Number Theory, Third Edition, 2015 Firas Rassoul-Agha and Timo Seppäläinen, A Course on Large Deviations with an Introduction to Gibbs Measures, 2015 Diane Maclagan and Bernd Sturmfels, ...
Knots Unravelled: From String to Mathematics