This book is dedicated to Dennis Sullivan on the occasion of his 60th birthday. The framework of affine and hyperbolic laminations provides a unifying foundation for many aspects of conformal dynamics and hyperbolic geometry. The central objects of this approach are an affine Riemann surface lamination $\mathcal A$ and the associated hyperbolic 3-lamination $\mathcal H$ endowed with an action of a discrete group of isomorphisms. This action is properly discontinuous on $\mathcal H$, which allows one to pass to the quotient hyperbolic lamination $\mathcal M$.Our work explores natural 'geometric' measures on these laminations. We begin with a brief self-contained introduction to the measure theory on laminations by discussing the relationship between leafwise, transverse and global measures. The central themes of our study are: leafwise and transverse 'conformal streams' on an affine lamination $\mathcal A$ (analogues of the Patterson-Sullivan conformal measures for Kleinian groups), harmonic and invariant measures on the corresponding hyperbolic lamination $\mathcal H$, the 'Anosov-Sinai cocycle', the corresponding 'basic cohomology class' on $\mathcal A$ (which provides an obstruction to flatness), and the Busemann cocycle on $\mathcal H$.A number of related geometric objects on laminations - in particular, the backward and forward Poincare series and the associated critical exponents, the curvature forms and the Euler class, currents and transverse invariant measures, $\lambda$-harmonic functions and the leafwise Brownian motion - are discussed along the lines. The main examples are provided by the laminations arising from the Kleinian and the rational dynamics. In the former case, $\mathcal M$ is a sublamination of the unit tangent bundle of a hyperbolic 3-manifold, its transversals can be identified with the limit set of the Kleinian group, and we show how the classical theory of Patterson-Sullivan measures can be recast in terms of our general approach. In the latter case, the laminations were recently constructed by Lyubich and Minsky in [LM97].Assuming that they are locally compact, we construct a transverse $\delta$-conformal stream on $\mathcal A$ and the corresponding $\lambda$-harmonic measure on $\mathcal M$, where $\lambda=\delta(\delta-2)$. We prove that the exponent $\delta$ of the stream does not exceed 2 and that the affine laminations are never flat except for several explicit special cases (rational functions with parabolic Thurston orbifold).
... Non-divergence equations structured on Hörmander vector fields: Heat kernels and Harnack inequalities, 2010 Olivier Alvarez and Martino Bardi, Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations, ...
During the preparation of these lecture notes, I have been supported by the following grants: N.S.F. Grant DMS 0202321, N.S.F. Grant DMS 0501020 and N.S.A. Grant MDA904-02-1-0100. The final version of the book was completed at I.A.S. ...
The second of three parts comprising Volume 54, the proceedings of the Summer Research Institute on Differential Geometry, held at the University of California, Los Angeles, July 1990 (ISBN for the set is 0-8218-1493-1).
Discusses the differential geometric aspects of complex manifolds. This work contains standard materials from general topology, differentiable manifolds, and basic Riemannian geometry.
A study of Moduli Theory would therefore give senior undergraduate and graduate students an integrated view of Mathematics. The present book is a humble introduction to some aspects of Moduli Theory.