The Schrodinger Model for the Minimal Representation of the Indefinite Orthogonal Group $O(p,q)$

The Schrodinger Model for the Minimal Representation of the Indefinite Orthogonal Group $O(p,q)$
ISBN-10
0821847570
ISBN-13
9780821847572
Category
Representations of Lie groups
Pages
132
Language
English
Published
2011
Publisher
American Mathematical Soc.
Authors
Toshiyuki Kobayashi, Gen Mano

Description

The authors introduce a generalization of the Fourier transform, denoted by $\mathcal{F}_C$, on the isotropic cone $C$ associated to an indefinite quadratic form of signature $(n_1,n_2)$ on $\mathbb{R}^n$ ($n=n_1+n_2$: even). This transform is in some sense the unique and natural unitary operator on $L^2(C)$, as is the case with the Euclidean Fourier transform $\mathcal{F}_{\mathbb{R}^n}$ on $L^2(\mathbb{R}^n)$. Inspired by recent developments of algebraic representation theory of reductive groups, the authors shed new light on classical analysis on the one hand, and give the global formulas for the $L^2$-model of the minimal representation of the simple Lie group $G=O(n_1+1,n_2+1)$ on the other hand.