This book covers the essential exploratory techniques for summarizing data with R. These techniques are typically applied before formal modeling commences and can help inform the development of more complex statistical models. Exploratory techniques are also important for eliminating or sharpening potential hypotheses about the world that can be addressed by the date you have. We will cover in detail the plotting systems in R as well as some of the basic principles of contructing informative data graphics. We will also cover some of the common multivariate statistical techniques uses to visualize high-dimensional data. Some of the topics we cover are making exploratory graphs, principles of analytic graphics, plotting systems and graphics devices in R, the base and ggplot2 plotting systems in R, clustering methods, and dimension reduction techniques. (Quelle: buchcover).
The Selected Papers of E. S. Pearson
Continuing its proven approach, the Seventh Edition has been updated with new examples, exercises, and content for an even stronger presentation of the material.
This classic text retains its outstanding features and continues to provide students with excellent background in the mathematics of statistics. Extensively revised with three new chapters.
Statistics
Techniques are introduced through examples, showing how statistics has helped to solve major problems in political science, psychology, genetics, medicine, and other fields.
Noted for its integration of real-world data and case studies, this text offers sound coverage of the theoretical aspects of mathematical statistics.
"A high school book written to help students make sense of the world with statistics."--
This Pearson Original edition is published for Macquarie University.
... the student should be able to : • draw a scatter diagram and a line of best fit • distinguish between positive and negative correlation • calculate covariance • calculate Pearson's product moment correlation coefficient calculate ...
The revision of this well-respected text presents a balanced approach of the classical and Bayesian methods and now includes a chapter on simulation (including Markov chain Monte Carlo and the Bootstrap), coverage of residual analysis in ...