Images from CT, MRI, PET, and other medical instrumentation have become central to the radiotherapy process in the past two decades, thus requiring medical physicists, clinicians, dosimetrists, radiation therapists, and trainees to integrate and segment these images efficiently and accurately in a clinical environment. Image Processing in Radiation Therapy presents an up-to-date, detailed treatment of techniques and algorithms for the registration, segmentation, reconstruction, and evaluation of imaging data. It describes how these tools are used in radiation planning, treatment delivery, and outcomes assessment. The book spans deformable registration, segmentation, and image reconstruction and shows how to incorporate these practices in radiation therapy. The first section explores image processing in adaptive radiotherapy, online monitoring and tracking, dose accumulation, and accuracy assessment. The second section describes the mathematical approach to deformable registration. The book presents similarity metrics used for registration techniques, discussing their effectiveness and applicability in radiation therapy. It also evaluates parametric and nonparametric image registration techniques and their applications in radiation therapy processes. The third section assesses the efficiency, robustness, and breadth of application of image segmentation approaches, including atlas-based, level set, and registration-based techniques. The fourth section focuses on advanced imaging techniques for radiotherapy, such as 3D image reconstruction and image registration using a graphics processor unit. With contributions from an international group of renowned authors, this book provides a comprehensive description of image segmentation and registration, in-room imaging, and advanced reconstruction techniques. Through many practical examples, it illustrates the clinical rationale and implementation of the techniques.
Lammert, M., & Timberlake, E. M. (1986). Termination of foster care for the older adolescent: Issues of emancipation and individuation.
Dou, L., E. Bertrand, C. Cerini, V. Faure, J. Sampol, R. Vanholder, Y. Berland, P. Brunet. ... A. Timberlake, B. Sumpio, R. Pfragner, I. M. Modlin, M. Kidd.
Chendrasekhar A, Moorman DW, Timberlake GA. An evaluation of the effects of ... Chittiboina P, Wylen E, Ogden A, et al. Traumatic spondylolisthesis of the ...
Hartmann LC, Radisky DC, Frost MH, et al. Understanding the premalignant potential of ... D'Alfonso TM, Wang K, Chiu YL, et al. Pathologic upgrade rates on ...
Stensland, J., Speedie, S., Ideker, M., House, J., & Thompson, T. (1999). The relative cost of outpatient ... Deal, J. L. (1987). Appraisal and diagnosis of ...
1 2 Howard, S. and Johnson, B. (2000) Resilient and Non-resilient Behaviour in ... 4 De Haan, L., Hawley, D. and Deal, J. (2002) 'Operationalizing family ...
... are not fluent in the language/s of the medical care provider.72 Research ... Anglo-Americans have traditionally placed a great deal of emphasis on the ...
This practical guide thoroughly discusses both well-established and new interventions that are applied to the spine for the purpose of pain relief.
Several versions of Pearson's MyLab & Mastering products exist for each title, including customized versions for individual schools, and registrations are not transferable.
If a picture paints a thousand words, imagine what video can do? Pearson Medical Assisting Videos help users learn the nuances and the details of many medical assisting procedures.