This book is intended for graduate students and research mathematicians working in functional analysis.
representation in 2 × 2 matrices is given by ( ) u→ n 0 0 1 , v → ( 1 1 0 1 ) . ... [3] O. Bratteli, P.E.T. Jorgensen, Iterated function systems and permutation representations of the Cuntz algebra. Mem. Amer. Math. Soc.
Iterated function systems and permutation representations of the Cuntz algebra. Mem. Amer. Math. Soc., 139(663):x+89, 1999. [9] Hans Brolin. Invariant sets under iteration of rational functions. Ark. Mat., 6:103– 144 (1965), 1965.
Let $N\in\mathbb{N}$, $N\geq2$, be given.
Let $\mathcal{O}_{d}$ be the Cuntz algebra on generators $S_{1},\dots,S_{d}$, $2\leq dinfty$.
[3] J.A. Ball and V. Vinnikov, Lax-Phillips scattering and conservative linear systems: a Cuntz-algebra ... [7] O. Bratteli and P.E.T. Jorgensen, Iterated function systems and permutation representations of the Cuntz algebra, ...
... Limit theorems for functionals of ergodic Markov chains with general state space, 1999 Ola Bratteli and Palle E. T. Jorgensen, Iterated function systems and permutation representation of the Cuntz algebra, 1999 B. H. Bowditch, ...
A. G. Myasnikov ( Moscow ) 99k : 46094a 46Lxx 11385 22D25 39B12 42C15 47D25 Bratteli , Ola ; Jorgensen , Palle E.T. Iterated function systems and permutation representations of the Cuntz algebra . ( English summary ) Mem . Amer . Math .
... 652 651 650 (Continued from the front of this publication) Volodymyr V. Lyubashenko, Squared Hopf algebras, 1999 S. Strelitz, ... Iterated function systems and permutation representation of the Cuntz algebra, 1999 B. H. Bowditch, ...
Isometries , shifts , Cuntz algebras and multiresolution wavelet analysis of scale N , Int . Equat . Oper . Theory 28 ( 1997 ) , 382-443 . [ 46 ] Iterated function systems and permutation representations of the Cuntz algebra , Mem .
14, 569–626 (2004) 4. Bratteli, O., Jorgensen, P.E.T.: Iterated function systems and permutation representations of the Cuntz algebras. Mem. Amer. Math. Soc. 139(663) (1999) 5. Cuntz,J.:SimpleC∗-algebras generated by isometries. Comm.