Three distinct types of contractions perform colonic motility functions. Rhythmic phasic contractions (RPCs) cause slow net distal propulsion with extensive mixing/turning over. Infrequently occurring giant migrating contractions (GMCs) produce mass movements. Tonic contractions aid RPCs in their motor function. The spatiotemporal patterns of these contractions differ markedly. The amplitude and distance of propagation of a GMC are several-fold larger than those of an RPC. The enteric neurons and smooth muscle cells are the core regulators of all three types of contractions. The regulation of contractions by these mechanisms is modifiable by extrinsic factors: CNS, autonomic neurons, hormones, inflammatory mediators, and stress mediators. Only the GMCs produce descending inhibition, which accommodates the large bolus being propelled without increasing muscle tone. The strong compression of the colon wall generates afferent signals that are below nociceptive threshold in healthy subjects. However, these signals become nociceptive; if the amplitudes of GMCs increase, afferent nerves become hypersensitive, or descending inhibition is impaired. The GMCs also provide the force for rapid propulsion of feces and descending inhibition to relax the internal anal sphincter during defecation. The dysregulation of GMCs is a major factor in colonic motility disorders: irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and diverticular disease (DD). Frequent mass movements by GMCs cause diarrhea in diarrhea predominant IBS, IBD, and DD, while a decrease in the frequency of GMCs causes constipation. The GMCs generate the afferent signals for intermittent short-lived episodes of abdominal cramping in these disorders. Epigenetic dysregulation due to adverse events in early life is one of the major factors in generating the symptoms of IBS in adulthood.
Lammert, M., & Timberlake, E. M. (1986). Termination of foster care for the older adolescent: Issues of emancipation and individuation.
Dou, L., E. Bertrand, C. Cerini, V. Faure, J. Sampol, R. Vanholder, Y. Berland, P. Brunet. ... A. Timberlake, B. Sumpio, R. Pfragner, I. M. Modlin, M. Kidd.
Chendrasekhar A, Moorman DW, Timberlake GA. An evaluation of the effects of ... Chittiboina P, Wylen E, Ogden A, et al. Traumatic spondylolisthesis of the ...
Hartmann LC, Radisky DC, Frost MH, et al. Understanding the premalignant potential of ... D'Alfonso TM, Wang K, Chiu YL, et al. Pathologic upgrade rates on ...
Stensland, J., Speedie, S., Ideker, M., House, J., & Thompson, T. (1999). The relative cost of outpatient ... Deal, J. L. (1987). Appraisal and diagnosis of ...
1 2 Howard, S. and Johnson, B. (2000) Resilient and Non-resilient Behaviour in ... 4 De Haan, L., Hawley, D. and Deal, J. (2002) 'Operationalizing family ...
... are not fluent in the language/s of the medical care provider.72 Research ... Anglo-Americans have traditionally placed a great deal of emphasis on the ...
This practical guide thoroughly discusses both well-established and new interventions that are applied to the spine for the purpose of pain relief.
Several versions of Pearson's MyLab & Mastering products exist for each title, including customized versions for individual schools, and registrations are not transferable.
If a picture paints a thousand words, imagine what video can do? Pearson Medical Assisting Videos help users learn the nuances and the details of many medical assisting procedures.