Deep Reinforcement Learning in Action

Deep Reinforcement Learning in Action
ISBN-10
1617295434
ISBN-13
9781617295430
Category
Computers
Pages
325
Language
English
Published
2020-04-28
Publisher
Manning Publications
Authors
Alexander Zai, Brandon Brown

Description

Summary Humans learn best from feedback—we are encouraged to take actions that lead to positive results while deterred by decisions with negative consequences. This reinforcement process can be applied to computer programs allowing them to solve more complex problems that classical programming cannot. Deep Reinforcement Learning in Action teaches you the fundamental concepts and terminology of deep reinforcement learning, along with the practical skills and techniques you’ll need to implement it into your own projects. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Deep reinforcement learning AI systems rapidly adapt to new environments, a vast improvement over standard neural networks. A DRL agent learns like people do, taking in raw data such as sensor input and refining its responses and predictions through trial and error. About the book Deep Reinforcement Learning in Action teaches you how to program AI agents that adapt and improve based on direct feedback from their environment. In this example-rich tutorial, you’ll master foundational and advanced DRL techniques by taking on interesting challenges like navigating a maze and playing video games. Along the way, you’ll work with core algorithms, including deep Q-networks and policy gradients, along with industry-standard tools like PyTorch and OpenAI Gym. What's inside Building and training DRL networks The most popular DRL algorithms for learning and problem solving Evolutionary algorithms for curiosity and multi-agent learning All examples available as Jupyter Notebooks About the reader For readers with intermediate skills in Python and deep learning. About the author Alexander Zai is a machine learning engineer at Amazon AI. Brandon Brown is a machine learning and data analysis blogger. Table of Contents PART 1 - FOUNDATIONS 1. What is reinforcement learning? 2. Modeling reinforcement learning problems: Markov decision processes 3. Predicting the best states and actions: Deep Q-networks 4. Learning to pick the best policy: Policy gradient methods 5. Tackling more complex problems with actor-critic methods PART 2 - ABOVE AND BEYOND 6. Alternative optimization methods: Evolutionary algorithms 7. Distributional DQN: Getting the full story 8.Curiosity-driven exploration 9. Multi-agent reinforcement learning 10. Interpretable reinforcement learning: Attention and relational models 11. In conclusion: A review and roadmap

Similar books

  • Family History Digital Libraries
    By William Sims Bainbridge

    One named Sara and Timberlake had 11 male workers, 1 female worker, and 4 children workers, so it might have employed the Minor family.

  • Foundation Dreamweaver MX
    By Craig Grannell, Jerome Turner, Matt Stephens

    So here's what we need to do to arrive at our layout: s Create the main table to hold all the page elements. s Deal with the navigation area which is ...

  • Cisco CCNA Certification, 2 Volume Set: Exam 200-301
    By Todd Lammle

    This inclusive, two-book set provides what you need to know to succeed on the new CCNA exam. The set includes Understanding Cisco Networking Technologies: Volume 1 and the CCNA Certification Study Guide: Volume 2.

  • CompTIA Network+ Study Guide: Exam N10-006
    By Todd Lammle

    ... you can use: –a –A –c –n –r –R –S –s All nbtstat switches are case sensitive. Generally speaking, lowercase switches deal with NetBIOS names of hosts, ...

  • CompTIA Network+ Study Guide with Online Labs: N10-007 Exam
    By Todd Lammle, Jon Buhagiar

    ... you can use: –a –A –c –n –r –R –S –s All nbtstat switches are case sensitive. Generally speaking, lowercase switches deal with NetBIOS names of hosts, ...

  • CCNA: Cisco Certified Network Associate FastPass
    By Todd Lammle

    S The S reference point defines the point between the customer router and an ... with the letter E deal with using ISDN on the existing telephone network.

  • Stranger in the Chat Room
    By Todd Hafer, Jedd Hafer

    A sequel to In the Chat Room With God finds a group of teens contacted by a mysterious and increasingly malevolent character who claims to know about their encounters with the Almighty and challenges their beliefs. Original.

  • Error Correction Coding: Mathematical Methods and Algorithms
    By Todd K. Moon

    M M−1∑ k=0 −∞ ∞ k=0 The average energy per signal E s ∫ can be related to the ... we will deal primarily with additive white Gaussian noise (AWGN), ...

  • Security+ Training Guide
    By Todd King

    ... to deal with most , but unfortunately not all , of these potential threats . ... The S / MIME standard implements encryption for message content using ...

  • CCDA: Cisco Certified Design Associate Study Guide: Exam 640-861
    By Todd Lammle, Andy Barkl

    S reference point The S reference point defines the reference point between ... with the letter E deal with using ISDN on the existing telephone network.