Deep Learning with PyTorch

Deep Learning with PyTorch
ISBN-10
1638354073
ISBN-13
9781638354079
Category
Computers
Pages
518
Language
English
Published
2020-07-01
Publisher
Simon and Schuster
Authors
Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga

Description

“We finally have the definitive treatise on PyTorch! It covers the basics and abstractions in great detail. I hope this book becomes your extended reference document.” —Soumith Chintala, co-creator of PyTorch Key Features Written by PyTorch’s creator and key contributors Develop deep learning models in a familiar Pythonic way Use PyTorch to build an image classifier for cancer detection Diagnose problems with your neural network and improve training with data augmentation Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands. Instantly familiar to anyone who knows Python data tools like NumPy and Scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s great for building quick models, and it scales smoothly from laptop to enterprise. Deep Learning with PyTorch teaches you to create deep learning and neural network systems with PyTorch. This practical book gets you to work right away building a tumor image classifier from scratch. After covering the basics, you’ll learn best practices for the entire deep learning pipeline, tackling advanced projects as your PyTorch skills become more sophisticated. All code samples are easy to explore in downloadable Jupyter notebooks. What You Will Learn Understanding deep learning data structures such as tensors and neural networks Best practices for the PyTorch Tensor API, loading data in Python, and visualizing results Implementing modules and loss functions Utilizing pretrained models from PyTorch Hub Methods for training networks with limited inputs Sifting through unreliable results to diagnose and fix problems in your neural network Improve your results with augmented data, better model architecture, and fine tuning This Book Is Written For For Python programmers with an interest in machine learning. No experience with PyTorch or other deep learning frameworks is required. About The Authors Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software. Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch. Thomas Viehmann is a Machine Learning and PyTorch speciality trainer and consultant based in Munich, Germany and a PyTorch core developer. Table of Contents PART 1 - CORE PYTORCH 1 Introducing deep learning and the PyTorch Library 2 Pretrained networks 3 It starts with a tensor 4 Real-world data representation using tensors 5 The mechanics of learning 6 Using a neural network to fit the data 7 Telling birds from airplanes: Learning from images 8 Using convolutions to generalize PART 2 - LEARNING FROM IMAGES IN THE REAL WORLD: EARLY DETECTION OF LUNG CANCER 9 Using PyTorch to fight cancer 10 Combining data sources into a unified dataset 11 Training a classification model to detect suspected tumors 12 Improving training with metrics and augmentation 13 Using segmentation to find suspected nodules 14 End-to-end nodule analysis, and where to go next PART 3 - DEPLOYMENT 15 Deploying to production

Other editions

Similar books

  • Family History Digital Libraries
    By William Sims Bainbridge

    One named Sara and Timberlake had 11 male workers, 1 female worker, and 4 children workers, so it might have employed the Minor family.

  • Foundation Dreamweaver MX
    By Craig Grannell, Jerome Turner, Matt Stephens

    So here's what we need to do to arrive at our layout: s Create the main table to hold all the page elements. s Deal with the navigation area which is ...

  • Cisco CCNA Certification, 2 Volume Set: Exam 200-301
    By Todd Lammle

    This inclusive, two-book set provides what you need to know to succeed on the new CCNA exam. The set includes Understanding Cisco Networking Technologies: Volume 1 and the CCNA Certification Study Guide: Volume 2.

  • CompTIA Network+ Study Guide: Exam N10-006
    By Todd Lammle

    ... you can use: –a –A –c –n –r –R –S –s All nbtstat switches are case sensitive. Generally speaking, lowercase switches deal with NetBIOS names of hosts, ...

  • CompTIA Network+ Study Guide with Online Labs: N10-007 Exam
    By Todd Lammle, Jon Buhagiar

    ... you can use: –a –A –c –n –r –R –S –s All nbtstat switches are case sensitive. Generally speaking, lowercase switches deal with NetBIOS names of hosts, ...

  • CCNA: Cisco Certified Network Associate FastPass
    By Todd Lammle

    S The S reference point defines the point between the customer router and an ... with the letter E deal with using ISDN on the existing telephone network.

  • Stranger in the Chat Room
    By Todd Hafer, Jedd Hafer

    A sequel to In the Chat Room With God finds a group of teens contacted by a mysterious and increasingly malevolent character who claims to know about their encounters with the Almighty and challenges their beliefs. Original.

  • Error Correction Coding: Mathematical Methods and Algorithms
    By Todd K. Moon

    M M−1∑ k=0 −∞ ∞ k=0 The average energy per signal E s ∫ can be related to the ... we will deal primarily with additive white Gaussian noise (AWGN), ...

  • Security+ Training Guide
    By Todd King

    ... to deal with most , but unfortunately not all , of these potential threats . ... The S / MIME standard implements encryption for message content using ...

  • CCDA: Cisco Certified Design Associate Study Guide: Exam 640-861
    By Todd Lammle, Andy Barkl

    S reference point The S reference point defines the reference point between ... with the letter E deal with using ISDN on the existing telephone network.