The term "neuromechanics" defines an integrative approach that combines the neuromuscular control and the biomechanical aspects of physical behavior in humans and animals. Crucial to this approach is a detailed description and modeling of the interaction between the nervous system and the controlled biomechanical plant. Only then do we have the broader context within which to understand evolution, movement mechanics, neural control, energetics, disability and rehabilitation. In addition to enabling new basic science directions, understanding the interrelations between movement neural and mechanical function should also be leveraged for the development of personalized wearable technologies to augment or restore the motor capabilities of healthy or impaired individuals. Similarly, this understanding will empower us to revisit current approaches to the design and control of robotic and humanoid systems to produce truly versatile human-like physical behavior and adaptation in real-world environments. This Research Topic is therefore poised at an opportune moment to promote understanding of apparently disparate topics into a coherent focus.